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Abstrad-Conservation laws are derived from materials whose constitutive behavior is characterized by
power·law creep with elastic strains. This is accomplished by formulating an adjoint variational principle
which has as its Euler-Lagrange equations the governing equations as well as a set of adjoint equations
involving adjoint variables. Conservation laws are then derived by an application of Noether's theorem to
the variational principle. The results are analogous to those obtained in linear elasticity, in that conservation
laws are shown to arise from translations of spatial and temporal coordinates, rigid-body rotations, and
self·similar scalings. A path-independent integral formulation of one of the conservation laws, valid under
special .;ircumstances, is derived.

INTRODUCTION

The derivation and application of conservation laws applicable. to various types of material
behavior has been a topic of recent interest in mechanics [1-7]. Conservation laws, by
definition, possess the general mathematical form

(1)

where Xk (K = 1, 2, 3) are the spatial coordinates, t denotes time, and the Ak are functions of
the independent and dependent variables for the pro!':c11. Equation (1) may be converted to an
equivalent integral formulation by integrating ove' :l spatial volume V and applying the
divergence theorem to obtain

(2)

where S is the bounding surface of V having unit normal vector Vk' Equation (2) may be
recognized to have the form generally associated with a conservation law: an equation
expressing a balance between surface flux terms and the time rate of change of some conserved
quantity (A4 in this case) throughout the volume V. If the problem is time-independent, we
obtain only the surface integral term in eqn (2). In two dimensions, this can lead under proper
circumstances to a path-independent integral form, a form which has applications in problems
in fracture mechanics.

In 1918, Emmy Noether (8) developed a useful and quite straightforward means of deriving
conservation laws for a physical system whose governing equations are derivable from a
variational principle. The resulting theorem essentially states that there exists a conservation
law corresponding to every infinitesimal transformation of the independent and dependent
variables which leaves the Lagrangian density unaltered to first order. Noether's theorem was
first applied to static elasticity by Gunther [1) and later independently by Knowles and
Sternberg [2), while the dynamic case was treated by Fletcher [3). Recently Delph [4) has noted
the existence of conservation laws in elasticity generated by divergence transformations.

Almost all of the applications to date of these conservation laws have been to nonlinear
fracture problems and have utilized the well-known]-integral conservation law, first developed
and applied in this regard by Rice [9J. Since Rice's initial work, there has developed a
voluminous literature dealing with various applications of the ] -integral to a variety of
nonlinear material behaviors. The ] -integral is strictly valid only for linear or nonlinear
elasticity, but may be extended to the deformation theory of plasticity if no unloading is
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allowed, or to power-law creep if elastic strains are excluded. However it has been widely
applied in an approximate sense to cases where these restrictions are violated.

The purpose of the present work is to explore the possibility of deriving conservation laws
for nonlinear time-dependent material behavior. In particular, we wish to consider conservation
laws satisfied by bodies whose constitutive behavior is that of power-law creep with elastic
strains.

VARIATIONAL PRINCIPLE

Under quasi-static conditions, the appropriate field equations are the equilibrium equation

and the constitutive relation

(J"··=OIJ,J (3)

(4)

where (J"ij is the stress tensor, uj the displacement rate, Cijkl the elastic constants, (J"lj the
deviatoric stress tensor, and (J"/ = O/2)(J"lj (J"lj' The quantities Band" are material constants.
Here (') == a/ at and ( ).j == a/ aXj'

If the elastic strain rate term is taken to vanish in eqn (4), then, as noted by Goldman and
Hutchinson [10], equations (3) and (4) become essentially time-independent. The I-integral
conservation law, as well as other of the Gunther-Knowles-Sternberg cdnservation laws, then
becomes strictly valid. However the inclusion of the elastic strain term renders eqn (3) and (4)
truly time-dependent and the aforementioned conservation laws then lose their validity.

In order to apply Noether's theorem, eqns (3) and (4) should be derivable from a variational
principle. This, however, can easily be shown not to be possible. The conditions which must be
satisfied in order that a given set of partial differential equations represent the Euler-Lagrange
equations for some variational principle are given by Tonti [11] and involve requirements
somewhat similar to those for formal self-adjointness in the case of ordinary differential
equations. It is not difficult to verify that the inclusion of the elastic strains in eqn (4) results in
the violation of those requirements, and hence that there exists no variational principle for
material behavior characterized by power-law creep with elastic strains.

One technique for circumventing this difficulty is the formulation of an adjoint variational
principle along the lines suggested by Morse and Feshbach for the linear diffusion equation [12].
Here a set of adjoint variables are introduced corresponding to the set of dependent variables in
the original problem. A functional is then constructed which has as its Euler-Lagrange
equations both the original partial differential equations and a set of adjoint partial differential
equations involving both the original and adjoint variables. By virtue of the method by which
the functional is constructed, the adjoint equations will always be linear in the adjoint variables.
In the area of mechanics, this technique has been used by Tasi and Herrmann [13] to obtain a
variational principle for linear thermoelasticity, and later employed by Herrmann {5] to derive a
set of associated conservation laws. It has also been used by Finlayson [14] to construct a
variational principle for the Navier-Stokes equations.

In eqns (3) and (4), the dependent variables are the displacement rate Iii and the stress
tensor (J"ij' If we take Vi and I ij to be the corresponding adjoint variables (Iij is assumed to be
symmetric), we may define a Lagrangian density L by

(5)

As boundary conditions for the adjoint variables, we prescribe the adjoint displacement rate
to be 5i over some portion 5" of the boundary and the adjoint stresses to be Iij over the
remaining portion 51' We now define a functional I by

(6)



Conservation laws for materials exhibiting power-law creep 909

and require the vanishing of the first variation of I. After an integration by parts with respect to
time and an applicaiton of the divergence theorem, we obtain

The Euler-Lagrange equations corresponding to the functional I are now seen to be eqns (3) and (4)
and the adjoint equations

(8)

(9)

The satisfaction of the Euler-Lagrange equations with the indicated boundary conditions on 1\
and I ij , along with the requirement that ~(1'k1 = 0 at t = to, t I> can be seen to render the functional
I stationary. As noted previously, the adjoint eqns (8) and (9) are linear in the adjoint variables,
though the coefficients may possibly be nonlinear functions of the regular variables.

CONSERVATION LAWS

We now turn our attention to possible conservation laws derivable from the variational
principle whose functional is given by eqn (6). In accordance with Noether's theorem, we thus
want to investigate classes of infinitesimal transformations of the independent and dependent
variables of the form

Xi =Xi + ~Xi; t = t + ~t

(10)

Noether's theorem asserts that there exists a conservation law corresponding to every group of
transformations (10) which leave the action integral for the variational principle invariant to first
order in the infinitesimal quantities, i.e.

('If LdVdt= (_"I. LdVdt.
J10 V Jio v

(11)

In the ensuing treatment we will assume that L = L, that is, we will ignore the possibility of
divergence transformations on the Lagrangian density function such as has been considered in
[4]. With this assumption. the relationship which the transformations given by eqn (10) must
satisfy in order that eqn (11) hold in the present case is, from Ref. [15]
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8Vi(aL/aV;) +8I;j(aL/aI jj )+OO;j(aL/aU;j) +8uj,j(aL/ouj)

+ 8Uij,k(aL/au;j,d + 8O";j) (aLlau;j) +((a8Xk/axd + a8t/at]L = O. (12)
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( 13)

In eqn (13) and subsequently, we use the total derivative notation to indicate differentiation
according to the chain rule, i.e.

(14)

whereas the partial derivative notation indicates differentiation with respect to the explicitly
appearing variable only.

For every group of transformations which satisfies eqn (13), and hence eqn (11), Noether's
theorem shows that there exists a conservation law which, in the present case, has the form [15]

(15)

We now wish to examine some particular groups of transformations.

(a) Transition of spatial coordinates
Since the Lagrangian density L given by eqn (5) does not contain the independent variables

explicitly, a spatial translation obviously represents an invariant transformation. We take

liXi = Elinl (n fixed); lit = liUi = liaij = 0 (16)

which corresponds to an infinitesimal translation of magnitude E along the n coordinate axis.
The associated conservation law from eqn (15) is

(17)

A similar transformation leads to the i-integral conservation law in linear elasticity [1-3].

(b) Translation along the time axis
Here we consider an infinitesimal shift of magnitude E along the time axis

for which the conservation law is

(18)

In the case of linear elasticity, this transformation leads to the law expressing conservation of
mechanical energy [3]. A similar interpretation seems to be indicated here since, as noted by
Morse and Feshbach [12], the adjoint system is constructed so as to absorb energy at the same
rate as which energy is dissipated in the regular system, leading to an overall conservation of

energy.
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(c) Rotation of spatial coordinates
Here we consider an infinitesimal rotation 8 about the n coordinate axis given by

911

(19)

Here, as in the case of linear elasticity [1-3], invariance under the transformations given by eqn
(19) requires that the material behavior be isotropic. The inelastic strain rate term as given in
eqn (4) already embodies this requirement, so we must require here that the elastic constants
Ciild be the isotropic constants. If this is done, it can be verified with a little effort that the
transformations (19) satisfy eqn (13). The associated conservation law is then found to be

(20)

(d) Scaling of coordinates
Finally, we consider the scaling transformations given by

SXt =EqX,; St =E(1- n)t

SUj = E(n +q)Uj; StJ; = E(n +q)Vj (21)

where q is a free parameter having arbitrary value. These transformations can be shown to
satisfy the invariance requirement given by eqn (13), and lead to the conservation law

(22)

The transformations (21) are directly related to a family of one-parameter self-similar
scaling solutions of eqns (3) and (4) and represent a generalization of a set of self-similar
solutions which were apparently first given by Riedel [16]. The role of self-similar solutions in
the generation of conservation laws has been discussed in a general context by Edelen [17].

DISCUSSION

In the foregoing we have derived sets of conservation laws valid for time-dependent
material behavior characterized by power law creep with elastic strains. These conservation
laws are somewhat analogous to those of linear elasticity [1-3], being based on invariance of the
action integral under space and time translations, rigid body rotations, and self-similar scalings.
As noted, we have excluded from consideration the possibility of divergence transformations,
such as those discussed in [4] for the case of linear elasticity.

Because the governing eqns (3) and (4) are not derivable from a variational principle, we have
chosen to construct an adjoint variational principle to which Noether's theorem could be applied.
Other approaches to deriving conservation laws are possible which we shall discuss shortly. The
present method is advantageous in that it yields conservation laws of the classical form given by
eqns (1) and (2) in a strailhtforward fashion. It has, however, a major drawback in that it is nec­
essary to introduce a set of new dependent variables adjoint to the original ones. This effectively
doubles the size of the problem which must be considered. This dift'iculty is somewhat mitigated by
the fact that the adjoint equations, eqns (8) and (9) in the present case, are always linear in the
adjoint variables by virtue of the method by which they are constructed. This makes them
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somewhat easier to handle than the original nonlinear equations. However there is no doubt
that introduction of the adjoint variables adds an extra measure of complexity to the problem.

From the point of view of applications, another difficulty arises from the form of the
conservation laws. Since the material behavior is assumed to be time-dependent. we always
obtain a term representing the time derivative of some quantity, as in the second term of eqn
(1). In the integral formulation given by eqn (2), this term becomes a volume integral. The
presence of this term makes it quite difficult, except in special cases, to express the con­
servation law as a "path-independent integral", a formulation which has been the basis of
almost all of the applications of conservation laws to date in solid mechanics.

However, as Eshelby has noted [18], it is possible to introduce a Galliean transformation of
coordinates which will take the volume integral term in eqn (2) into a surface integral if the
problem can be assumed to be rendered time-invariant under such a transformation. A
particular example is that of steady-state crack propagation in an unbounded body. To an
observer translating with the crack tip, the stress and deformation fields about the crack appear
to be time-independent. In order to be more definite, consider the case, recently studied by Hui
and Riedel [19], of two-dimensional quasi-static crack propagation along the x, coordinate axis.
Let Q be the constant crack propagation rate. If we then consider the origin of coordinates to
translate with the crack tip, under steady state conditions we have

(24)

Introducing eqn (24) into eqn (17), and setting n == 1, there results

(25)

We now integrate eqn (25) over some two-dimensional area A and apply the divergence
theorem. Noting that the field eqns (3) and (4) lead to the vanishing of L over A and the
bounding contour S, we obtain

(26)

where IIj are the components of the unit normal vector to S. If we impose traction-free
boundary conditions over the crack face and note that 111 =0 here as well, then the integrand of
eqn (26) represents a "path-independent integral" for the case of steady-state creep crack
propagation in an unbounded body, and may find possible applications in the analysis of this
problem.

Finally, we discuss briefly other possible approaches to the derivation of conservation laws
which do not depend on the use of adjoint variational principles. One such approach is through
the use of variational principles based on convolution products, such as have been given for
linear viscoelasticity by Gurtin [20] and more recently by Francfort and Herrmann [7] for linear
thermoelasticity. As noted, these variational principles make use of convolution products in the
time variable, and have been used by Francfort and Herrmann [7] as a basis for the derivation
of conservation laws. Additionally, a conservation law for linear viscoelasticity derived by
Nilsson [21] appears to be related to one of the variational principles of Gurtin. This entire
approach, however, seems to depend upon the linearity of the governing equations and hence is
of dubious applicability to nonlinear material behavior of the sort exemplified by eqn (4).

A more promising approach is through the use of various techniques involving the use of the
exterior calculus [17, 22, 23]. These techniques are attractive in that they do not require the
existence of a variational principle, as does Noether's theorem, but rather work directly with
the governing equations. In particular, Edelen [17,23] has shown how the isovector fields for
the equations of linear elasticity may be used to generate the corresponding conservation laws.
The application of isovector techniques to eqns (3) and (4) will be discussed in a subsequent
work.

Finally we note the existence of a number of so-called restricted variational principles which
lead to eqns (3) and (4), provided that certain of the first variations of the dependent variables
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are arbitrarily required to vanish. Several of these are discussed in the book by Rabotnov [24].
These, however, are not variational principles in the true sense of the term, and because of the
artificial restrictions involved in their construction, cannot be used in conjunction with
Noether's theorem as the basis for conservation laws.
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